Abstract

Adding periodicity to structures leads to wavemode interaction, which generates pass- and stop-bands. The frequencies at which stop-bands occur are related to the periodic nature of the structure. Thus structural periodicity can be shaped in order to design vibro-acoustic filters for reducing vibration and noise transmission. The aim of this paper is to investigate, numerically and experimentally, stop-bands in periodic one-dimensional structures. Two methods for predicting stop-bands are described: the first method applies to infinite periodic structures using a wave approach; the second method deals with the evaluation of a vibration level difference (VLD) in a finite periodic structure embedded within an infinite one-dimensional waveguide. This VLD is defined to predict the performance in terms of noise and vibration insulation of periodic cells embedded in an otherwise uniform structure. Numerical examples are presented, and results are discussed and validated experimentally. Very good agreement between the numerical and experimental models in terms of stop-bands is shown. In particular, the results show that the stop-bands obtained using a wave approach (applied to a single cell of the structure) predict those obtained from the VLD of the corresponding finite periodic structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.