Abstract

Parallel underexpanded round jets system has been widely used in engineering applications, and the flow field structures are very complex because of the jets interaction. In this paper, we studied the near-field mixing phenomenon in parallel dual underexpanded jets numerically by solving the Reynolds-Averaged Navier-Stokes Equations. The numerical results agree well with experimental data acquired by particle image velocimetry. Similar to plane jets, to some degree, two round jets are deflected towards the dual nozzle symmetry plane; the flow field can also be divided into three regions. Meanwhile, attempts have been made to predict merge point and combine point locations on certain cross profile of computational domain by correlating them with jet spacing and jet pressure ratio. The jet spacing plays an important role in jets interaction, and jet interaction decreases with the increase in jet spacing. The jets interaction in terms of merge (combine) point and pressure varies significantly while the jet spacing differs. Additionally, as pressure ratio increases, the effect of jet interaction decreases, and the merge (combine) point location moves downstream.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.