Abstract
<p>Dry-snow slab avalanches are the main cause of avalanche fatalities in mountainous regions. Their release is a multi-scale process which starts with the formation of a localized failure in a highly porous weak snow layer underlying a cohesive snow slab, followed by rapid crack propagation within the weak layer. Finally, a tensile fracture through the slab leads to its detachment. The dynamic process of crack propagation, which affects the size of avalanche release zones, is still rather poorly understood. To shed more light on this crucial process, we performed a series of flat field fracture mechanical experiments, up to ten meters long, over a period of 10 weeks from January to March 2019. These experiments were analyzed using digital image correlation to derive high-resolution displacement fields to compute dynamic crack propagation metrics. We then used a 3D discrete element method (DEM) to numerically simulate these experiments to investigate the micro-mechanics. Both in the experiments and in the simulations, we observed a stationary regime after several meters of crack propagation. The DEM simulations showed that in this regime crack propagation is driven by compressive stresses. A parametric DEM study showed that the elastic moduli of the slab and weak layer, as well as weak layer shear strength, are key variables affecting crack propagation. Our results also highlight that these mechanical parameters influence the propagation distance required to attain the steady-state regime. Finally, DEM simulations on steep slopes showed the emergence of a so-called supershear crack propagation regime, driven by shear stresses, in which crack propagation velocity becomes intersonic. These simulations were confirmed by preliminary experimental results obtained on a steep slope. Our experimental and numerical datasets provide unique insight into the dynamics of crack propagation and lay the foundation for comprehensive studies on the influence of snowpack mechanical properties on the fundamental processes of slab avalanche release.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.