Abstract

AbstractA relatively small change in oxide content and microstructure in MCrAlY coatings (M = Co, Ni) can affect the functionality of the coating for oxidation protection or as a bond coat. The objective of this study is to fabricate a CoNiCrAlY coating with low porosity and low oxide content. The high velocity air-fuel (HVAF) process, with its relatively low process temperature, is particularly suitable for the deposition of spray materials that are susceptible to oxidation or degradation at high temperature. A CFD simulation model of HVAF process is developed to determine the process parameters for fabricating CoNiCrAlY coating. The simulation results are validated by particle diagnostics, thereby establishing a comprehensive understanding of the underlying process. To assess the coating microstructure, XRD and EDS analyses as well as observation of cross sections of the coatings are conducted. The results highlight the influence of various factors, such as the variation of carrier gas and particle size distribution, on the quality of the coatings. Consequently, the utilization of simulation-based process parameter development is well supported by the coating fabrications, offering valuable insights into the processes prior to implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call