Abstract
This paper presents and compares two different uniaxial constitutive models for superelastic shape-memory alloys (SMAs), suitable to study the dependence of the stress-strain relationship on the loading-unloading rate. The first model is based on the inclusion of a direct viscous term in the evolutionary equation for the martensite fraction and it shows how the material response is bounded between two distinct rate-independent models. The second model is based on a rate-independent evolutionary equation for the martensite fraction coupled with a thermal balance equation. Hence, it considers mechanical dissipation as well as latent heat and includes the temperature as a primary independent variable, which is responsible of the dynamic effects. The ability of both models to reproduce the observed reduction of damping properties through the modification of the hysteresis size is discussed by means of several numerical simulations. Finally, the capacity of the constitutive equations to simulate experimental data from uniaxial tests performed on SMA wires and bars of different size and chemical composition is shown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.