Abstract

ABSTRACT The primary objective of this research is to study the cavitating effects of fluid flow past different axisymmetric cavitator in the upper sub-critical flow regime, which corresponds to the Reynolds number (2 × 104 to 2 × 105). Experiments are conducted in a water tunnel with a fluid flow velocity of 30 to 60 m/s at a constant rate of injection. The commercial software tool, ANSYS Fluent 18.1, is used to simplify three dimensional Reynolds averaged Navier Stokes equation with the compressible fluid flow by considering the pressure-based solver with standard k–ϵ turbulence model. A comparison of the numerical and experimental results shows that the numerical method can predict accurately the shape parameters of the natural cavitation phenomena such as cavity length, cavity diameter, and cavity shape. Results reported that with an increase in velocity, the cavity length and diameter increased to 250% and 20% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.