Abstract

The dynamics of a parabolic arch is studied in its undamaged and damaged states. The damage consists of a notch that reduces the height of the cross section at a given abscissa. A damage identification technique, based on the minimization of an objective function measuring the differences between numerical and experimental variations of natural frequencies for undamaged and damaged states, is used. The uniqueness of the solution in different damage configurations is investigated using pseudo-experimental data and the reliability of the identification procedure is assessed. The identification procedure is then applied to an experimental case, where frequencies are obtained by impulsive tests on a prototype arch. The minimum number of experimental data needed to identify damage parameters is defined and the sensitivity of the identification algorithm to different possible choices of sets of data is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.