Abstract

This paper describes one-dimensional periodic shell structures that have variable cross sections, a new type of periodic shell structures made from photopolymer. This paper will discuss the stiffness of periodic sub-cells that have variable cross sections and the band gaps of Bragg scattering shell structures based on numerical analysis and a series of experiments. This paper uses the Bloch theorem and lumped-mass method to create a band gap model for periodic shell structures. In this paper, an equivalent stiffness model for sub-cells is also created based on the principle of superposition and validated by experiments. Numerical studies and experiments are conducted to examine the effects of geometrical parameters, number of sub-cells, and stiffness of sub-cells on band gaps of one-dimensional periodic shell structures and to test the effectiveness of the models. The findings in this paper prove that by varying the stiffness of sub-cells under a fixed lattice constant, band gaps of one-dimensional periodic shell structures can be decreased. The findings also confirmed that the initial band gap of one-dimensional periodic shell structures can be lowered by increasing the number of sub-cells in a period. Unlike other types of Bragg scattering periodic structures, one-dimensional periodic shell structures allow their longitudinal band gaps to be adjusted under a fixed lattice constant. Those findings serve as a theoretical foundation for the application of Bragg scattering periodic shell structures in low-frequency vibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.