Abstract

The hydrodynamic performance of a three-dimensional finite-length rotating cylinder is studied by means of a physical tank and numerical simulation. First, according to the identified influencing factors, a hydrodynamic performance test of the rotating cylinder was carried out in a circulating water tank. In order to explore the changing law of hydrodynamic performance with these factors, a particle image velocimetry device was used to monitor the flow field. Subsequently, a computational field dynamics numerical simulation method was used to simulate the flow field, followed by an analysis of the effects of speed ratio, Reynolds number, and aspect ratio on the flow field. The results show that the lift coefficient and drag coefficient of the cylinder increase first and then decrease with the increase of the rotational speed ratio. The trend of numerical simulation and experimental results is similar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.