Abstract

The current work is focused on numerical and experimental studies of woven fabric composites modified by hybridisation with biological (cellulosic) filler materials. The mechanical performance of the composites is characterized under tensile, bending and impact loads and the effect of hybridisation is observed with respect to pure and nonhybrid composites. Numerical models are developed using computational tools to predict mechanical performance under tensile loading. The computational prediction results are compared and validated with relevant experimental results. This research is aimed at understanding the mechanical performance of basalt-epoxy composites partially reinforced with micro-/nano-sized bio-fillers from cellulose and intended for various application areas. Different weave structures, e.g., plain, twill, matt, etc., were investigated with respect to the mechanical properties of the hybrid composites. The effects of hybridizing with cellulose particles and different weave patterns of the basalt fabric are studied. In general, the use of high-strength fibres such as basalt along with cellulosic fillers representing up to 3% of the total weight improves the mechanical performance of the hybrid structures. The thermomechanical performance of the hybrid composites improved significantly by using basalt fabric as well as by addition of 3% weight of cellulosic fillers. Results reveal the advantages of hybridisation and the inclusion of natural cellulosic fillers in the hybrid composite structures. The material developed is suitable for high-end applications in components for construction that demand advanced mechanical and thermomechanical performance. Furthermore, the inclusion of biodegradable fillers fulfills the objectives of sustainable and ecological construction materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.