Abstract

An appropriate assessment of the dynamic behavior of marine propulsion shaft in ships is essential to enable optional delivery of power to the propeller and to minimize unnecessary vibration. Various vibrations coupling with each other can significantly influence the dynamical behavior of the shaft and threaten the reliability of ships. This paper presents a finite element analysis model with multiple constraint conditions to analyze the coupled transverse and longitudinal vibrations of a marine propulsion shaft. Based on this model, in addition to the coupled natural frequencies of each direction, the maximum acceleration are also determined. Furthermore, the simulation of an idling and loading vibration analysis is discussed and validated against experimental results, over a range of rotational speeds. The output of numerical simulation is found to agree with the corresponding results from experimental tests. Finally, an accurate and applicative FEA model for coupled transverse-longitudinal vibration of shaft has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.