Abstract

Gas Metal Arc Welding (GMAW) process was analyzed by combining a finite element thermomechanical model for temperature and stress with solidification model. Model prediction was compared with experimental data in order to validate the model. The effects of welding process parameters on these welding fields were analyzed and reported. The effort to correlate the residual stress and solidification was initiated, yielding some valuable results. The solidification process was simulated using the formulation based on the Hunt-Trivedi model. Based on the temperature history, solidification speed and primary dendrite arm spacing were predicted at given nodes of interest. Results show that the variation during solidification is usually within an order of magnitude. The temperature gradient was generally in the range of 104–105 K/m for the given welding conditions (welding power = 6 kW and welding speed = 3.39 to 7.62 mm/sec), while solidification speed appeared to slow down from an order of 10−2 to 10−3 m/sec during solidification. SEM images revealed that the Primary Dendrite Arm Spacing (PDAS) fell in the range of 101−102 μm. The range of predicted sizes was in agreement with the experimental values. It was observed that the average size of the PDAS was dependent upon the welding speed. The PDAS fell between 7.5 to 20 μm for columnar and 10 to 30 μm for equiaxed dendrites, for welding speeds between 3.39 to 7.62 mm/sec. When the welding speed increased, it was observed that the average size of the PDAS decreased, as the model had predicted. For grain growth at the Heat Affected Zone (HAZ), Ashby's model was employed, and the prediction was in agreement with experimental results. For the residual stress calculation, the same mesh generation used in the heat transfer analysis was applied to make the simulation consistent. The analysis consisted of a transient heat analysis followed by a thermal stress analysis. An experimentally measured strain history was compared with the simulated result. The relationship between microstructure and the stress/strain field of welding was also obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.