Abstract

Numerous previous numerical studies have investigated the effect of surface texturing upon the static characteristics of journal bearings, including their load-carrying capacity and friction torque. In general, the dynamic characteristics of journal bearings are also important, since they are essential factors in predicting the vibration behavior of actual rotors supported by journal bearings. However, the effects of surface texture upon these dynamic characteristics have not been investigated through either numerical or experimental analysis. Thus, in the present study, such analyses were conducted to investigate the dynamic characteristics of textured journal bearings, such as their dynamic coefficients of oil film and the stability-threshold shaft speed supported by the bearings. Numerical analysis was done using a model that included inertial effects and energy loss; this model agreed well with experimental results concerning static characteristics from our previous study. Dynamic testing based on a sinusoidal-excitation method was also performed using textured journal bearings with uniform square dimples to verify the numerical results, which agreed qualitatively with those of experiment, confirming the validity of the numerical analysis. These results suggest that under the same operating conditions, the main effect of texturing upon the dynamic coefficients is to yield the cross-coupled stiffness coefficients with lower absolute values than the conventional ones with a smooth surface. The linear stability-threshold shaft speed of the rotor supported by the textured journal bearings became higher than that of a smooth bearing, mainly due to the reduction of cross-coupled stiffness coefficients. This tendency became more pronounced for high Reynolds number operating conditions and textured bearings with a large number of dimples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call