Abstract

Plastic design allows the exploitation of the full resistance of steel structures by taking advantage of stress–redistributions due to plastic strains exceeding the yield strain. Especially in seismic design the utilization of material reserves and the formation of plastic hinges play an important role. In devastating earthquakes in Northridge (USA) and Kobe (Japan) brittle fracture of welded connections in steel moment frames occurred prior to formation of plastic hinges and utilization of plastic material reserves. The subsequent research works resulted in improved design rules and recommendations for these kinds of failure. But to guarantee sufficient ductile performance of these connections also in the upper shelf region, plastic and earthquake resistant design rules should take into account degradation of strain capacity and toughness properties due to quasi static and especially seismic loading. In the scope of the current European project “Plastotough”, the main objective is to derive quantified toughness design rules in the upper shelf based on the strain requirements opposed to strain capacities. This paper gives an overview over the research work in performance and shows recent results from experimental and numerical analyses performed within this project for monotonic and cyclic loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.