Abstract

In this paper, a novel meshless numerical scheme to solve the time-fractional Oskolkov–Benjamin–Bona–Mahony–Burgers-type equation has been proposed. The proposed numerical scheme is based on finite difference and Kansa-radial basis function collocation approach. First, the finite difference scheme has been employed to discretize the time-fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial derivatives. The stability and convergence analysis of the time-discretized numerical scheme are also elucidated in this paper. Moreover, the Kudryashov method has been utilized to acquire the soliton solutions for comparison with the numerical results. Finally, numerical simulations are performed to confirm the applicability and accuracy of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.