Abstract

A preliminary two dimensional numerical model of wheel/rail in rolling contact is established to study the adhesion characteristics of wheel/rail with considering surface roughness under oil and water mixed contamination. A partial elastohydrodynamic lubrication (EHL) theory in line contact is applied in the model. The present numerical model is used to investigate the effects of contact pressures of wheel/rail, the volume fraction of oil and their locations in the contact zone, train speed on the adhesion coefficient under oil and water mixed contamination condition. In addition, the effects of oil contamination, water contamination and water/oil mixed contamination on the adhesion coefficient are compared. The numerical results show that the adhesion coefficient is greatly influenced by the train speed, the volume fraction of oil and their locations in the contact zone. Furthermore, in order to verify the accuracy of the numerical model, the numerical results are compared with the experimental results that were obtained by JD-1 wheel/rail simulation facility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call