Abstract

A simplified thermal hydraulic model is developed to investigate the influence of wick column on the performance of a flat plate heat pipe (FPHP). The governing equations of the FPHP are solved by using the computational fluid dynamics package FLUENT. The temperature, velocity and pressure fields are obtained. The validity of the model is confirmed by comparing the present solutions with the open literature data. The numerical results show that with the increase of the wick column size, the maximum velocity of the liquid and vapor decreases while the total thermal resistance and capillary heat transfer limit of the FPHP increases gradually. The performance of the FPHP may degrade if the wick column is placed inside the vapor core asymmetrically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call