Abstract
In this study, the nonequilibrium phenomena of the electronic excitation process behind hypersonic shock waves have been investigated through numerical analysis. In the analysis, the three-temperature model is employed and temperature profiles are computed along the distance from the shock front. In the three-temperature model, the translational–rotational, vibrational and electron-electronic excitation temperatures are separately described and the relaxation processes for each energy mode are considered. Numerical calculations are conducted under the conditions corresponding to the shock tube experiments conducted in our previous study and the results are compared with the experimental data. It is found that the calculated and measured vibrational temperature profiles are in good agreement. In contrast, the calculated electronic excitation temperature is much lower than the measured one, revealing the discrepancy in the modeling of the electronic excitation temperature. To investigate the effect of electron behavior, parametric studies are conducted using the three-temperature model. The calculated temperatures agree well with the measured temperatures by considering the electrons in the region ahead of the shock wave. This result suggests that the effect of electron behavior is significant for hypersonic shock waves and a detailed model to describe the nonequilibrium phenomena is needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.