Abstract

Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace diseased heart valves but still suffer from complications such as hemolysis and platelet activation. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, a fluid-structure interaction (FSI) simulation is performed to investigate the characteristics of physiological flow interacting with moving leaflets in a BMHV. The present FSI model uses both a finite volume computational fluid dynamics code and a finite element structure dynamics code to solve the governing equations for fluid flow and leaflet dynamics. In addition, a structural analysis is performed with the forces acting on the leaflet surfaces. From the analysis, detailed flow information and leaflet behavior are quantified for a cardiac cycle. The results show that the present FSI model performs well at predicting the overall flow patterns interacting with the moving leaflets and leaflet behavior in the BMHV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.