Abstract

AbstractThis work examines the heat transfer properties of magnetohydrodynamic nanofluid flow. Through a similarity conversion, the leading structure of partial differential equations is changed to that of ordinary differential equations. A rigorous mathematical bvp4c methodology is used to generate numerical results. The purpose of this study is to characterize the different temperature, concentration, and velocity limitations on a nanofluid with a magnetic effect that is spinning. The findings for rotating nanofluid flow and heat transfer characteristics of nanoparticles are shown using graphs and tables. The influence of physical factors such as heat transfer rates and skin friction coefficients is studied. When the magnetic parameter M is raised, the velocity of the nanoliquid decreases. A rise in thermal radiation (Rd) causes the temperature graphs to grow substantially, although the concentration profiles exhibit the opposite tendency. The effect of the convective heat transfer factor Bi on temperature is shown to increase as Bi increases, but the concentration distribution decreases as Biot increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call