Abstract

Numerical analysis on the electrical and thermal flow characteristics of Ar-N2 inductively coupled plasma (ICP) were carried out for N2 content from 0 to 50 mol% at plasma power level of 50 kW. Firstly, the computational results of thermal flow fields revealed that the addition of N2 could reduce the radiation heat loss, together with increasing the exit enthalpy. For example, the radiation heat loss of Ar-N2 ICP with N2 content of 20 mol% is reduced by ∼ 33%, compared with that of Ar-only ICP, which are essential for the safe operation of an ICP system at the high power level of 50 kW. In addition, the increase of N2 content was also found to increase the load resistance of a tank circuit for a vacuum tube oscillator. Equivalent circuit analysis using the numerical results shows that this increase of the load resistance comes from the increasing equivalent resistance and the decreasing equivalent inductance of Ar-N2 ICP, corresponding to the changes of thermal flow fields with the increase of N2 content. For a tank circuit consisting of a capacitor and an inductor with a capacitance of 6,500 pF, and an equivalent inductance of 0.84 μH, the load resistance was calculated to be increased from 81 Ω for Ar only ICP to 130 Ω for Ar-N2 ICP with N2 content of 20 mol%. Considering the internal resistances of high power vacuum tubes higher than 130 Ω, this increase of load resistance clearly shows that N2 addition can improve the impedance mismatching of an ICP torch system with a vacuum tube oscillator having no variable part to tune the load resistance. By providing these basic data for the calculation of load resistance and thermal flow characteristics, the numerical analysis combined with equivalent circuit analysis used in this work can help in designing and operating a high-powered ICP torch system with a vacuum tube oscillator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.