Abstract

Abstract The blast wave propagates into the surrounding air when the high-pressure gas pipeline burst. Both temperature and pressure increase very rapidly. The generation of the blast wave and structural dynamic fracture are tightly coupled together during the burst of the high-pressure gas pipeline. However, fracture behavior and characteristics that influence blast waves’ intensity and spatial shape are rarely studied. This paper establishes a numerical model incorporating strain-based failure criteria for pipe material and fluid-structure coupling algorithm. The dynamic crack growth of the pipe and the outer blast wave propagation can be successfully captured in every timestep. The model is validated by comparing the simulated explosion pressure history and peak overpressure outside the pipeline with the experimental results. The blast wave intensity changes and the distribution of overpressure in the jet direction are clarified. Then some critical parameters of the resulting fracture and blast wave are examined, such as the pipe diameter and wall thickness. Specifically, the relationship between pipe fracture and the generated blast field is discussed, providing a deeper understanding of this highly transient and strong fluid-structure interaction problem. The results would benefit the prediction and accident investigation of high-pressure gas pipeline rupture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.