Abstract

The dynamics of the 1.5-degree-of-freedom model of towed wheel is investigated. Dry friction at the king pin is considered, leading to a non-smooth dynamical system. Beyond analytical and numerical linear stability analysis, the nonlinear vibrations are investigated by numerical bifurcation analysis with smoothing and by numerical simulations with event handling. The effect of dry friction at the king pin on the birth of separated periodic branches is presented on bifurcation diagrams. The presence of bistable parameter domains is also shown. The effect of smoothing is investigated by comparing bifurcation diagrams of the smoothed and the original non-smooth systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call