Abstract

The hydrodynamics of the waterjet-propelled ship is a challenging issue due to the sophistication of waterjet system geometry as well as waterjet–hull interaction. In current study, three different propulsion models, namely, multiple reference frame (MRF) model, sliding mesh model and body-force model, are utilized to simulate the self-propulsion of a waterjet-propelled ship model. A body-force model based on a User-Defined Function (UDF) on the ANSYS Fluent platform is proposed. The computational cost, wave pattern, jet stream surface, and self-propelled hull resistance of the MRF model and body-force model are compared. Comprehensive comparisons of the internal ingested flow field of the control volume are made, especially at the capture area and nozzle section, with the two different models. In addition, the resistance increment fraction and jet system thrust deduction fraction with the two different models are investigated. Lastly, the flow field with the steady MRF model, the body-force model (RANS) and the transient sliding mesh model (URANS) are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.