Abstract

This paper presents modeling and simulation results of a modified copper-column-based flip-chip interconnect with ultrafine pitch for wafer-level packaging, and the process and prototyping procedure are described as well. This interconnect consists of multiple copper columns which are electrically in parallel and supporting a solder bump. A simple analytical model has been developed for correlation between the interconnect geometry and the thermal fatigue life. In comparison to the conventional single-copper-column (SCC) interconnects, numerical analysis reveals that the multi-copper-column (MCC) interconnect features enhanced compliances and, hence, higher thermomechanical reliability, while the associated electrical parasitics (R, L, and C) at dc and moderate frequencies are still kept low. Parametric studies reveal the effects of geometric parameters of MCC interconnects on both compliances and electrical parasitics, which in turn facilitate design optimization for best performance. By using coplanar waveguides (CPWs) as feed lines on both chip and package substrate, a high-frequency (up to 40 GHz) S-parameter analysis is conducted to investigate the transmission characteristics of the MCC interconnects within various scenarios which combines various interconnect pitches and common chip and package substrates. An equivalent lumped circuit model is proposed and the circuit parameters (R, L, C, and G) are obtained throughout a broad frequency range. Good agreement is achieved for the transmission characteristics between the equivalent lumped circuit model and direct simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.