Abstract

Fluid flow and heat transfer characteristics of pulsating flow around the vibrating tube was numerically investigated by the dynamic meshing technique of FLUENT. The results showed the combined action of pulsating flow and vibration enhances the coefficient of heat transfer, and the surface heat transfer coefficient of vibrating tube increases with the increment of the tube vibration amplitude, frequency and pulsating flow amplitude, and pulsating flow frequency has less affected. The main reason that pulsating flow enhances heat transfer is the secondary flow, generated by the combined effect of pulsating flow and tube vibration, enhances momentum and energy transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.