Abstract

The performance of axial flow compressor stage can be improved by minimizing the effects of secondary flow and by avoiding flow separation. At higher blade loading, interaction of tip secondary flow and separated flow on blade surface is more near the tip of the rotor. This results in stall and hence decreases compressor performance. A previous study [1] was carried out to improve the performance of a rotating row of blades with the help of Vortex Generators (VGs) and considerable effects were observed. The current investigation is carried out to find out the effect of Vortex Generator (VG) on the performance of a compressor stage. NASA Rotor 37 with NASA Stator 37 (stage) is used as a test case for the current numerical investigation. VGs are placed at different chord wise as well as span wise locations. A mesh sensitivity study has been done so that simulation result is mesh independent. The results of numerical simulation with different geometrical forms and locations of VGs are presented in this paper. The investigation includes a description of the secondary flow effect and separation zone in compressor stage based on numerical as well as experimental results of NASA Rotor 37 with Stator 37 (without VG). It is also observed that the shape and location of the VG impacts the end wall cross flow and flow deflection [1], which result in enhanced stall range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.