Abstract

Two-dimensional hydromagnetic flow and heat transfer of Walters-B fluid towards a stagnation point region over a stretching cylinder is discussed. Constitutive equations are transformed into dimensionless form by means of suitable similarity transformations. Spectral quasi-linearization method is employed to obtain the solution of similarity equations. Comparison of computed results with existing results in the limiting case of a flat sheet is also provided. Analysis of obtained results is performed through graphs to discuss the influence of emerging parameters on the velocity and temperature profiles. The flow and heat transfer characteristics are analyzed through parameters representing curvature of cylinder, velocity ratio parameter, magnetic parameter, and Weissenberg number. The curvature of the cylinder has significant impact on the velocity and temperature. A magnetic field applied externally suppresses the bulk motion and alters the momentum boundary layer thickness. The drag and heat transfer rate on the surface of the cylinder are examined through skin friction and heat transfer coefficients. Furthermore, streamlines are drawn to see the flow pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call