Abstract

A finite element approach is extended to study the ground vibrations induced by metro trains and their propagation properties. Two dynamic interaction models are established: the two-dimensional train-track interaction model, which provides the excitation loads of moving trains onto the tunnel structure, and the three-dimensional track-tunnel-ground interaction model, by which the propagation properties of ground accelerations and velocities are analyzed. The results show that there exists a vibration amplifying area in certain distance away from the tunnel center, and the dominant frequencies of the ground vibration concentrate in a certain range. Buildings located in that area with their natural frequencies falling in the specific frequency range will be sensitive to the ground vibrations induced by metro trains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.