Abstract

AbstractPressure gain combustion is a revolutionary concept to increase gas turbine efficiency and thus potentially reduces the environmental footprint of power generation and aviation. Pressure gain combustion can be realized through pulsed detonation combustion. However, this unsteady combustion process has detrimental effects on adjacent turbomachines. This paper identifies realistic time-variant compressor outlet conditions, which could potentially stem from pulsed detonation combustion. Furthermore, a low fidelity approach based on the 1D-Euler method is applied to investigate the performance of a compressor exposed to these outlet boundary conditions. The simulation results indicate that the efficiency penalty due to unsteady compressor operation remains below 1% point. Furthermore, between 80% and 95% of the fluctuations’ amplitudes are damped till the inlet of the 4-stage compressor.KeywordsPressure gain combustionUnsteady 1D-Euler simulationCompressor performance

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.