Abstract

In this study, a numerical model is developed for the analysis of elastohydrodynamic lubrication (EHL) at transient conditions during startup and shutdown processes. The time-dependent solutions are derived from an iterative algorithm with surface roughness involved, and the initial value is specified as the solution of the dry contact for the startup or steady-state solution of the lubrication contact at the starting velocity for the shutdown. The technique of discrete convolution and fast Fourier transform (DC-FFT) is employed to improve the computational efficiency. Solutions for smooth surfaces are compared with those obtained numerically and experimentally, and good consistency can be found. Profiles of pressure and film thickness and contours of subsurface stresses are analyzed to reveal the effects of acceleration/deceleration on the lubrication evolution. An isotropic roughness is then taken into account for the analysis. It is concluded that the coupling effects of the lubricant cavitation and oriented roughness would result in complex profiles of pressure and film thickness due to their disturbances to the lubrication film. A machined rough surface is presented to demonstrate the generality of the model. The analysis may potentially provide guidance to estimate the behavior of mechanical elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.