Abstract

In the present work, heat transfer from a jacketed wall of a scraped-surface heat exchanger (SSHE) is numerically simulated. With the purpose to analyse the hydrodynamic and thermal behaviour under various operating and geometrical conditions, the three-dimensional form of the Navier-Stokes and energy equations are discretized using the controlled-volume method. The hydrodynamic and thermal behaviour can take a variety of possible configurations depending on the number, shape, size of the scrapers and the ratio of rotation to the axial Reynolds numbers. Stagnation points can be easily located, which may be of interest for improving temperature-sensitive processes. The rate of heat transfer is also numerically determined in order to optimize operating and geometrical conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.