Abstract
An approach to the numerical study of three-dimensional flow past a high-speed electric train is considered, including the case of turbulent boundary layer separation. The method of viscous-inviscid interaction is used to compute the aerodynamic characteristics. The results of calculating the 3D flow past two configurations of a high-speed electric train, taking into account the close proximity of the ground surface, are presented for a train speedV∞=300 km/h and the per meter Reynolds number Re=5.6·106 m−1. One of these configurations is shown to have the advantage of separationless flow past a front locomotive and less intense diffuser separations on the afterbody of a rear locomotive. A local separation zone on the sides of the front locomotive's nose was detected in one of the cases considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.