Abstract

We report on a detailed investigation of two approaches to the modeling of the nonlinear polarization evolution (NPE) effect, forming part of an effective artificial saturable absorber. Comparison of scalar and hybrid models was performed on an example of an all fiber laser, generating highly chirped dissipative solitons at 1.55 µm. It was shown that distributed action of this type of saturable absorber in the specially designed cavity can be reduced to the point action and described in terms of critical power, modulation depth, and phase shift of the sinusoidal transmission function. Its parabolic approximation gives a large area with less than 15% difference between the energies and durations of the pulses in the considered models. Qualitative relations between the physical cavity parameters and parameters of the transmission function have been established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.