Abstract

AbstractInsufficient research has been done on the mechanical and thermal properties of rubber concrete in the presence of fire. In this paper, we do detailed numerical modeling of the rubber concrete's thermomechanical behavior under dynamic conditions at high temperatures (800°C) using different percentages of rubber aggregate (0%, 10%, 20%, and 30%). The novelty of this work lies in its analysis of the temperature profiles over time in rubber concrete. This analysis is carried out using finite difference models developed with the MATLAB tool to predict thermomechanical parameters such as elastic modulus, thermal strain, tensile strength, and compressive strength. In addition, the dynamic behavior of the rubber concrete under impact loading was predicted, including stress and velocity change as a function of time at elevated temperatures. By the equations of motion and transient conduction, the mathematical model developed is based on density, thermal conductivity, heat capacity, and thermal expansion. The comparison between numerical and experimental results, and the analysis of the influence of the percentage of rubber aggregates on thermomechanical parameters, as well as the influence of temperature on the evolution of stress and velocity as a function of time, have shown the effectiveness of the mathematical and numerical model developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.