Abstract

This is the second part of our error analysis of the stabilized Lagrange–Galerkin scheme applied to the Oseen-type Peterlin viscoelastic model. Our scheme is a combination of the method of characteristics and Brezzi–Pitkäranta’s stabilization method for the conforming linear elements, which leads to an efficient computation with a small number of degrees of freedom especially in three space dimensions. In this paper, Part II, we apply a semi-implicit time discretization which yields the linear scheme. We concentrate on the diffusive viscoelastic model, i.e. in the constitutive equation for time evolution of the conformation tensor a diffusive effect is included. Under mild stability conditions we obtain error estimates with the optimal convergence order for the velocity, pressure and conformation tensor in two and three space dimensions. The theoretical convergence order is confirmed by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.