Abstract

A numerical analysis of the microdischarge in a plasma display panel have been made by using 2-dimensional multifluid equations. The discharge gas used is Ne+Ar 0.1% in a state of non-LTE glow. The distributions of the microscopic variables such as the density, temperature, velocity of the charged particles and the density of the uncharged particles are obtained. The distributions of excited species are examined during glow and afterglow. From the simulation results, the nondischarge pulses applied to the auxiliary anode confine the plasma to the core of the microdischarge. It is found that metastable species and other excited species are locally confined around the auxiliary anode during glow and afterglow. Locally confined particles indirectly due to the nondischarge pulses play a role to improve the characteristics of the DC plasma display panel. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.