Abstract

In this study, the geometry of open-cell foams is simulated using a model based on Voronoi tessellations. The fracture toughness of open-cell foams with Voronoi cells, including Mode-I, Mode-II, and the mixed-mode ones, are calculated by the finite-element method based on a micromechanical model. Cracks in the micromechanical model are created through removing some number of cells pertaining to the crack length. Displacement boundary conditions are applied to the boundary of a small region surrounding the crack tip, which are calculated based on the linear elastic fracture mechanics. The effects of relative density, disorder factor and sample size on the predicted elastic properties and fracture toughness of open-cell foams with Voronoi cells are discussed and compared with results available in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.