Abstract

The aim of this work is the development of a 3D numerical model of the foot that allows evaluating the influence of degenerative phenomena on the foot mechanical functionality. Such degenerative phenomena induce histo-morphological alterations and significant modification of the plantar soft tissue mechanical properties, as stiffening and lower damping capabilities. The finite element model of the foot is developed starting from the analysis of biomedical images. Different constitutive models define the mechanical response of the biological tissues. Because of the major role of plantar soft tissue in the here proposed analysis, a specific visco-hyperelastic constitutive formulation is provided considering the typical features of the tissue mechanics, as geometric and material non linearity, almost incompressible behavior and time-dependent phenomena. Constitutive parameters are identified by the analysis of experimental data from in vitro and in vivo mechanical tests, leading to the identification of a range of constitutive parameters for healthy and degenerative conditions. Numerical analyses are developed to investigate the influence of the progression of the degeneration on the distribution of stress and of strain within foot tissues during static standing. Numerical results show the increase of stress values with the appearance of degenerative conditions, showing the typical stiffening phenomenon. The mechanical response of the plantar soft tissue during specific loading condition and the influence of degenerative phenomena on foot mechanics can be evaluated with numerical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call