Abstract

Nowadays, multifunctional artificial reefs are integrated in coastal areas all around the world. The design of such structures is currently complex and subjective. In this context, it is essential to improve overall design approaches to more effectively relate artificial reef geometry, function and optimal performance to specific deployment sites. Part of the solution to this challenge may lie in the use of in situ data to study the hydrodynamic performance of prospective artificial reefs. This research addresses this issue by performing a numerical investigation of the flow transformation of two similar artificial reef geometries, and the analysis of performance indicators based on (i) artificial reef assembly cross section, (ii) upwelling and (iii) wake regions evaluation, (iv) efficiency indices and (v) streamlines particles. Based on typical data related to wave action, a velocity inlet boundary condition was defined adopting the non-uniform velocity distribution, aimed at simulating the most realistic boundary condition at the chosen deployment location. The results showed that the multifunctional artificial reef assembly with the droplet shape cross section exhibited enhanced function performance when compared to a circular shape cross section by providing significantly higher values of the upwelling velocity, wake region and associated efficiency indices. In addition, the procedure presented in this study, which considers oceanographic data at the deployment site, the geometry of the artificial reef, in situ flow characteristics and boundary conditions, as well as the devised fluid flow performance indicators, can be used for the design of artificial reefs during the concept stage in an objective manner to consider the local design requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call