Abstract

This work presents a numerical spectral properities analysis of a chirped-Bragg-grating-based Fabry-Perot (F-P CTFBG) cavity written in tapered fiber together with its application for strain monitoring. The work focuses on analyzing the structure's sensing performance and spectral response for codirectionally and counter-directionally written reflectors for various manufacturing process parameters (reflector lengths, phase mask chirp ratios, and positions on the linear transition of tapered fiber). In turn, it is shown that by manipulating the Bragg wavelength distribution of the cavity's reflectors, it is possible to control strain sensitivity character (i.e., positive or negative). The discussion also focuses on signal processing of the acquired spectrum through analytical derivation of the digital filter parameters that allows for unambiguous extraction of the cavity length for a given axial force applied to the each sensor irrespectively. Finally, a sensing system consisting of two cavities with either co-directionally or counter-directionally written reflectors is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.