Abstract

The sulfur–iodine (S-I) water-splitting cycle is one of the most promising hydrogen production methods. The Bunsen reaction in the cycle affects the flowsheet complexity and thermal efficiency, but an electrochemical technique has recently been applied to make the S-I cycle more simplified and energy efficient. However, the performance of the electrochemical Bunsen reaction, especially the electrode reactions inside the electrolytic cell (EC) are not clear at present. In this work, a two-dimensional numerical model of EC was developed. The detailed reaction process was numerically calculated with considering the coupling of mass transfer and electrochemical reactions, and was verified using experimental data. The effects of various operating parameters on the reactions were investigated. The results showed that the increase of current density significantly improves the conversion rates of reactants. A higher temperature is unfavorable for concentrating H2SO4 and HI. Increase in the inlet flow rate reduces the conversion rates of reactants, but the impact declines with further rising flow rate. An optimal operating condition is also proposed. The theoretical simulation study will provide guidance for the improvement of experimental work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call