Abstract

The failure behavior of intermittent jointed rocks is dependent on joint configurations. Joint inclination angle and continuity factor determined the joint arrangement in a rectangular numerical sample that was established by using the particle flow code approach. To identify the differences in the failure processes of identical intermittent jointed samples, uniaxial compressive and shear loads were applied on each sample. The crack growth path presented the four typical crack coalescence patterns identified via compressive and shear numerical tests. The crack coalescence pattern was associated with joint slant angle and continuity factor. The observed crack coalescence patterns of every sample with the same inclination angle and continuity factor were partially identical under compressive and shear loading. The differences in the crack patterns of the compressive and shear failure processes were described and compared. Typical compressive and shear failure processes were illustrated. Four compressive and three shear failure modes were identified. The cracking location and number of cracks in each failure mode were different. Additionally, the contact force evolution among particles during shear and compressive loading was different and likely accounted for the differences in cracking patterns. Under compressive or shear loading, the contact force concentration in each sample underwent the following stages: uniform distribution before loading, concentrated distribution, and scattered distribution after failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call