Abstract
Abstract Numerical analysis of temperature profiles during thermal modification of wood was carried out. The numerical solution – based on finite element analysis, FEA – of the 3D problem of transient nonlinear heat transfer model is presented for wood as a typical anisotropic material. The numerical model was enhanced for describing chemical reactions of cellulose, hemicelluloses and lignin (pyrolysis model), which takes into account the exothermic reactions as an internal source of heat energy. Experimental as well as theoretical process schedules were applied and the influence of sample dimensions (sample geometry) and wood species was studied. The influence of wood species was negligible on heating time to reach the highest temperature, i.e., the temperature differences were about 2°C during the drying phase. A expected, the sample size played an important role in the heating duration and in terms of the exothermic reactions of wood. The experimental and numerical data are generally in good agreement. The numerical error increased in the range of higher temperatures. The results can be improved by consideration of wood species (mass of wood compounds) and boundary conditions in the pyrolysis model, thus, better insight into details of thermal modification of wood could be reached.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.