Abstract

Mostly for military purposes, which require high speed and low drag, super-cavitating flows around under-water bodies have been an interesting, yet difficult research subject for many years. In the present study, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped cavitator was studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Through the verification tests, the appropriate selection of domain extents, cell counts, numerical schemes, turbulence models, and cavitation models was studied carefully. A cavitation model based on the two-phase mixture flow modeling was selected with the standard k-epsilon model for turbulence closure. The cavity length, surface pressure distribution, and the flow velocity at the interface were compared with experimental data and analytic solutions. Various computational conditions, such as different wedge angles and caviation numbers, were considered for super-cavitating flow around the wedge-shaped cavitator. Super-cavitation begins to form in the low pressure region and propagates downstream. The computed cavity length and drag on the body were compared with analytic solution and computational results using a potential flow solver. Fairly good agreement was observed in the three-way comparison. The computed velocity on the cavity interface was also predicted quite closely to that derived from the Bernoulli equation. Finally, comparison was made between the computational results and cavitation tunnel test data, along with suggestions for cavitator designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.