Abstract
Stress singularities occur at crack tips, corners and material interfaces. The stress intensity factors and T-stresses are coefficients of structural components where the active stress singular and first regular stress terms, respectively, are denoted by William's eigen function expansion series. A finite element analysis by CASTEM 2000 have been undertaken in order to determine the evolution of the T-stress and stress intensity factor terms in mode I for an arc of pipeline specimens with an external surface crack. A stress difference method described by Moustabchir et al. (2012) are adapted and, in the following step, the volumetric method is then embedded to compute the SIFs and T-stress near the crack tip. Different crack geometries combined with different length-to-thickness ratios are examined for the T-stress and stress-intensity factor. The revisited stress difference method employed here shows to be an accurate and robust scheme for evaluating the T-stress/SIFs in an arc of the pipeline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.