Abstract

Unsteady regimes of convective-radiative heat transfer in a cubic enclosure with finitely thick heat-conducting walls in the presence of a constant-temperature energy source have been modeled mathematically under the conditions of convective heat exchange with the environment. A mathematical model has been formulated in dimensionless variables “vector potential–vorticity vector–temperature;” the model was realized numerically by the finite-difference method. An analysis of radiative heat transfer has been made on the basis of the surface-radiation approximation with the balance method in Polyak’s version. Three-dimensional temperature and velocity fields and dependences for the average Nusselt number have been obtained; they reflect the influence of the reduced emissivity factor of interior surfaces of enclosing walls, of the relative thermal conductivity, and of the unsteadiness factor on the flow regimes and heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.