Abstract

Three kinds of models are used for beam instability analyses: those based on a solid beam, an infinitesimally thin annular beam, and a finitely thick annular beam. In high-power experiments, the electron beam is an annulus of finite thickness. In this paper, a numerical code for a sinusoidally corrugated waveguide with a finitely thick annular beam is presented and compared with other models. Our analysis is based on a new version of the self-consistent linear theory that takes into account three-dimensional beam perturbations. Slow-wave instabilities in a K-band oversized sinusoidally corrugated waveguide are analyzed. The dependence of the Cherenkov and slow cyclotron instabilities on the annular thickness and guiding magnetic field are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.