Abstract

A study has been made of asperity interaction of unlubricated steel/rubber sliding pair. The aim is to study the effect of the internal friction (hysteresis) of rubber on the friction force. In the two-dimensional finite element analysis, asperities are modeled by cylinders and both the interfacial adhesion and the friction at steel-rubber interface are neglected. Rate-dependent material behavior of rubber is described, as a first approximation, by a three-parameter Zener-model. It is found that the viscoelastic properties of rubber have a strong influence on the hysteresis component of friction. Distribution of energy loss generated over a cycle of contact in the rubber asperity is also studied. It is concluded that the energy dissipation is most intensive at a certain depth below the rubber surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.