Abstract

For a wide range of the thicknesses of the charge and the multiplication layers, detection efficiency and dark count probability are numerically investigated for GaInAs∕InP single photon detection avalanche photodiodes (APD’s) which are operated in the Geiger mode. Breakdown probability and dark currents are calculated to evaluate detection efficiency and dark count probability. The result shows that dark count probability can be significantly reduced by increasing the thickness of the charge layer, whereas detection efficiency is expected to decline steeply at some thickness of the charge layer. Moreover, increasing the thickness of the multiplication layer does not continue to reduce dark count probability, which increases when the multiplication layer is thicker than a critical thickness. Finally, we show a design guideline of single photon detection APD’s with higher detection efficiency and lower dark count probability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.